COURSE HANDOUT

Course Code

ACSC13

Course Name

Design and Analysis of Algorithms

Class / Semester

IV SEM

Section

A-SECTION

Name of the Department

CSE-CYBER SECURITY

Employee ID TARE11023
Employee Name Dr K RAJENDRA PRASAD
Topic Covered Merge Sort

Course Outcome/s

Use the merge sort for sorting of elements and find the time analysis

Handout Number

19

Date

21 April, 2023

Content about topic covered: Merge sort

Merge sort
Given a sequence of n elements a[1], ... , a[n]. The idea is to split in to two sets a[1], ... ,a[n/2]
and a[(n/2)+1], ..., a[n]. Each set is individually sorted, and the resulting sorted sequences are

merged to produce a single sorted sequence of n elements.

Algorithm MergeSort(low, high)

/ allow : high] is a global array to be sorted.
// Small(P) is true if there is only one element
// to sort. In this case the list is already sorted.

{

if (low < high) then // If there are more than one element

// Divide P into subproblems.

// Find where to split the set.
mid := |(low + high)/2};

// Solve the subproblems.
MergeSort(low, mid);
MergeSort(mid + 1, high);

// Combine the solutions.
Merge(low, mid, high);

Algorithm Merge(low, mid, high)

// allow : high] is a global array containing two sorted

// subsets in al[low : mid] and in a[mid + 1 : high|. The goal
// is to merge these two sets into a single set residing

// in allow : high]. b[] is an auxiliary global array.

h = low; 1 := low; § := mad + 13
while ((h < mid) and (5 < high)) do

if (a[h] < a[j]) then

bli] := alhlsh := h +1;
else

g :==alfs s =5+ 1;
t:=1+1;

s
if (h > mid) then
for k .= j to high do

b[t] ;= alk]; ¢ :=2 + 13

else
for k£ := h to mid do

b[t) == alk)s t: =i+ 1;

for k := low to high do alk] := b[k];

Example of quicksort:
Eg: a[l:10]= (310, 285, 179, 652, 351, 423, 861, 254, 450, 520)

(310] 285| 179 652,351] 423,861,254, 450,520)
Elements a[l]and a[2] are merged to yield

(285,310] 179] 652,351] 423,861,254, 450,520)
Then a[3] is merged with a[l:2]

(179,285,310 652,351| 423,861,254, 450,520)
Next, elements a[4] and a[5] are merged

(179,285,310| 351,652| 423,861,254, 450,520)
and then a[l:3] and a[4 :5] are merged

(179,285,310,351,652| 423,861,254, 450,520)

(179,285,310,351,652| 423 | 861| 254 | 450,520)
Elements a[6] and a[7] are merged. Then a[8] is merged with a[6:7]:
(179,285,310,351,652| 254, 423,861| 450,520)
Next a[9]and a[10] are merged, and then a[6:8] and a[9:10] are merged
(179,285,310,351,652| 254, 423,450,520,861)
At this point there are two sorted sub arrays and the final merge produces the fully sorted result
(179, 254, 285,310, 351, 423, 450, 520, 652, 861).

Tree of calls of Merge Sort(1,10) are shown below:

[1,2} [3.3] [4.4]

JS,S
[LI][2.2] [8.6][7.7]

Trees of calls of Merge are shown below:

[i KA

,2,3 4,4,5 6,7,8 99,10

135 6,8,10
| 1510 |

If the time for the merging operation is proportional to ‘n’, then the computing time for merge sort is
described by the recurrence relation

a n =1, ais constant

frd n
() {2 T (5) +cn n>1, cisconstant

T(n) =

When n is power of 2, n=2¥

T(n)=2T(1)+kcn
=an+cnlogn
Disadvantage of Merge sort:

Merge sort uses 2n locations. The additional n locations are needed because we could not merge two
sorted sets in place. On each call of Merge the values from array b[] are copied back to array a[].

To avoid this advantage, we use QUICKSORT... The time complexity T(n) = O(n log n).

